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p Academic Social Network Analysis
 and Mining system—AMiner
 (http://aminer.org) 
p  Online since 2006 
p  >38 million researcher profiles 
p  >100 million publications 
p  >241 million requests 
p  >12.35 Terabyte data 
p  100K IP access from 170 countries

 per month 
p  10% increase of visits per month 

p Deep analysis, mining, and search 

AMiner II (ArnetMiner) 
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Researcher Profile Database[1] 

Extracted more than 1,000,000 
researcher profiles from the Web 

[1] J. Tang, L. Yao, D. Zhang, and J. Zhang. A Combination Approach to Web User Profiling. ACM Transactions on Knowledge Discovery from 
Data (TKDD), (vol. 5 no. 1), Article 2 (December 2010), 44 pages. 
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Is this Enough? 
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Required semantics are distributed in
 multiple sources  

LinkedIn Videolectures 
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Identity Linking 
•  Identifying users from multiple heterogeneous networks and integrating

 semantics from the different networks together. 
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COSNET: Connecting Social Networks with
 Local and Global Consistency 

•  Input: G={G1, G2, …, Gm}, with Gk=(Vk, Ek, Rk) 
•  Formalization: X={xi}, all possible pairwise

 matchings and each corresponds to 
 
•  COSNET: an energy-based model  

[1] Yutao Zhang, Jie Tang, Zhilin Yang, Jian Pei, and Philip Yu. COSNET: Connecting Heterogeneous Social Networks 
with Local and Global Consistency. KDD’15. 

yi ∈{1,0}

Y * = argminE(Y ,X)
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Local vs. Global consistency 

•  Given three networks,  
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Local vs. Global consistency 
•  Local matching: matching users by profiles 
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Local 
consistency 

Pairwise similarity features 
–  Username similarity and

 uniqueness 
–  Profile content similarity 
–  Ego network similarity 
–  Social status 

Energy function 
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Local vs. Global consistency 
•  Network matching: matching users’ ego networks 

Network 
matching 

Local 
consistency 

Encourage “neighborhood
-preserving matching” 
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Network Matching 
•  Network matching: matching users’ ego networks 

𝒗𝟏𝟏 
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Candidate Pruning 

•  Content-based method 
– Username similarity above a threshold 

•  Structure-based similarity 
– Starting from a seed mapping set and iteratively

 propagate the m 
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Local vs. Global consistency 
•  Global consistency: matching users by avoiding global

 inconsistency 

Global 
inconsistency 

Network 
matching 

Local 
consistency 

Avoid “global inconsistency” 
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Local vs. Global consistency 
•  Global consistency: matching users by avoiding global
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Avoid Global Inconsistency 

Energy function 
Input networks Matching graph 
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Model Construction 

Objective function by combining all the energy functions 
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(a) Two input networks (b) The generated matching graph (c) Matching graph after pruning (d) The constructed model
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Model Learning 
•  Max-margin learning 

 

•  As the original problem is intractable, we use Lagrangian
 relaxation to decompose the original objective function into a
 set of easy-to-solve sub-problems 
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Model Learning (cont.) 

•  Dual decomposition 

The resulting objective function is convex
 and non-differentiable, and can be solved
 by projected sub-gradient method 

This provides a lower bound to
 the original function  
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Results 
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Connecting AMiner with … 

•  LinkedIn and VideoLectures 

Name-match: match name only;  
SVM: use classifier to identify the same user; 
MNA: an optimization method;  

SiGMa: local propagation;  
COSNET: our method; 
COSNET-: w/o global consistency. 
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Connecting Social Media Sites 

•  Twitter, LiveJournal, Last.fm, Flickr, MySpace 

Name-match: match name only;  
SVM: use classifier to identify the same user; 
MNA: an optimization method;  

SiGMa: local propagation;  
COSNET: our method; 
COSNET-: w/o global consistency. 



28 

Effects of Global Consistency 

+5.4%

Academia Collection SNS Collection 

+9.5%

COSNET-: w/o global consistency. 
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Application in AMiner 

- Video contents

- Personal profiles
- Business connections
- Skills and expertise

- Patents data
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Thanks! 

              
     http://aminer.org 

 
Data & source code                                  http://aminer.org/cosnet 
  


