

Collaborative Embedding Features and Diversified Ensemble for E-Commerce Repeat Buyer Prediction

Zhanpeng Fang*, Zhilin Yang*, Yutao Zhang Tsinghua Univ. (* equal contribution)

Results

- Team "FAndy&kimiyoung&Neo"
- 2nd place in stage 1
- 3rd place in stage 2
- The only team marching in top 3 of both stages

Team Members

- Zhanpeng Fang
 - Master student, Tsinghua Univ. & Carnegie Mellon Univ.

Zhilin Yang
Bachelor E., Tsinghua Univ.

Yutao Zhang
 – PhD student, Tsinghua Univ.

Task

- Input:
 - User behavior logs
 - user, item, category, merchant, brand, timestamp, action
 - User profile
 - age, gender.
- Output:
 - The probability that a new buyer of a merchant is a repeat buyer

Challenges

- Heterogeneous data
 - User, merchant, category, brand, item
- Repeat buyer modeling
 - What are the characteristic features for modeling repeat buyer?
- Collaborative information
 - How to leverage the collaborative information between users and merchants [in a shared space]?

Feature Engineering – Basic Features

- User-Related Features
 - Age, gender, # of different actions
 - #items/merchants/... that clicked/purchased/favored
 - Omitting add-to-cart in all actions related features increases performance (since almost identical to purchase)
- Merchant-Related Features
 - Merchant ID
 - #actions and #distinct users that clicked/purchased/ favored (only in Stage 1)

Feature Engineering – Basic Features

- User-Merchant Features
 - # different actions
 - Category IDs and brand IDs of the purchased items

- Post Processing
 - Feature binning in Stage 1
 - Log(1+x) conversion in Stage 2
 - Perform similarly. Both much better than raw values.

Repeat Features

- User Repeat Features
 - Average span between any two actions
 - Average span between two purchases
 - How many days since last purchase

Repeat Features

- User-Merchant/Category/Brand/Item Repeat Features
 - Average active days for one merchant/ category/brand/item
 - Maximum active days for one merchant/ category/brand/item
 - Average span between any two actions for one merchant/category/brand/item
 - Ratio of merchants/categories/brands/items with repeated actions

Repeat Features

- Category/Brand/Item Repeat Features
 - Average active days on given category/category/brand/item of all users
 - Ratio of repeated active users on given category/brand/item
 - Maximum active days on given category/brand/item of all users
 - Average days of purchasing the given category/brand/item of all users
 - Ratio of users who purchase the given categories/brands/item more then once
 - Maximum days of purchasing the given category/brand/item of all users
 - Average span between two actions of purchasing the given category/brand/item of all users

Embedding Features

Heterogeneous interaction graph

Embedding Features

Heterogeneous interaction graph

Embedding Features

Embedding Features: Interaction Graph

- Let the graph G = (V, E)
 - V is the vertex set
 - E is the edge set

- V contains all users and merchants
- If user u interacts with merchant m, then add an edge <u, m> into E

Embedding Features: Random Walk

- Repeat a given number of times
 - For each vertex v in V
 - Generate a sequence of random walk starting from v
 - Append the sequence to the corpus

Generate random walk corpus

Embedding Features: Skipgram

Use the current word W(j) to predict the context.

Objective function:

$$L = -\sum_{W \in \mathcal{W}} \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0}^{T} (f'_{W_{t+j}} \, {}^{\mathsf{T}} f_{W_t} - \sum_{w \in V} f'_w \, {}^{\mathsf{T}} f_{W_t})$$

Use SGD to optimize the above objective and obtain embeddings for users and merchants.

Embedding Features: Dot Products

- Now we have embeddings of all users and merchants.
- Given a pair <u, m>, we derive a feature

$$f_u^{\mathsf{T}} f_m$$

- to represent the semantic similarity between u and m.
- f means embeddings.

Embedding Features: Diversification

- Simply applying the dot product of embeddings is not powerful enough.
- Recall that we use SGD to learn the embeddings.
- We use embeddings at different iterations of SGD.
- An example
 - Run 100 iterations of SGD.
 - Read out embeddings at iteration 10, 20, ..., 100.
 - Obtain a 10-dim feature vector of dot products
- Intuition: similar to ensemble models with different regularization strengths

Individual Models

- Logistic regression
 - Use the implementation of Liblinear
- Factorization machine
 - Use the implementation of LibFM
- Gradient boosted decision trees
 - Use the implementation of XGBoost

Method	Implementation	Best AUC in Stage 1 (%)
Logistic Regression	Liblinear	69.782
Factorization Machine	LibFM	69.509
GBDT	XGBoost	69.196

Diversified Ensemble

Diversified Ensemble: Appending New Features

Diversified Ensemble: Cartesian Product

	LR	GBDT	FM
Feature Set F0	Ensemble 1	Ensemble 2	Ensemble 3
Feature Set F1	Ensemble 4	Ensemble 5	Ensemble 6
Feature Set F2	Ensemble 7	Ensemble 8	Ensemble 9

Diversified Ensemble Results

- Simple ensemble: Only ensemble the top 3 models
- Diversified ensemble outperforms simple ensemble

Method	Implementation	Best AUC in Stage 1 (%)
Logistic Regression	Liblinear	69.782
Factorization Machine	LibFM	69.509
GBDT	XGBoost	69.196
Simple Ensemble	Sklearn Ridge	70.329
Diversified Ensemble	Sklearn Ridge	70.476

Factor Contribution Analysis

- Clear performance increase after adding each feature set
- Both embedding features and repeat features provide unique information to help the prediction
- The results are based on Logistic Regression

No.	Feature Sets	Stage 1 AUC (%)	Gain
1	Basic features	69.369	-
2	1 + Embedding features	69.495	0.126
3	2 + Repeat features	69.782	0.287

Stage 2 Performance

- Repeat features are consistent in both stages
- Data cleaning is important

- duplicated/inconsistent records exist in this stage

• The results are based on Logistic Regression

No.	Method	AUC (%)	Gain
1	Basic features	70.346	-
2	1 + Repeat features	70.589	0.243
3	2 + Data cleaning & more features	70.898	0.309
4	3 + Fine-tuning parameters	71.016	0.118

Summary

- "Tricks" on how to win top 3 in both stages
 - **–Diversified ensemble**
 - -Novel embedding features

Thank you! Questions ?