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Abstract
In online advertisement, after sales promotion, it is
important to predict which buyers will return and
become loyal repeat buyers. Given the action logs
of users, brand and category information of items,
and user profiles, we study the problem of repeat
buyer prediction on E-commerce data, which aims
to predict whether a new buyer of a merchant is a
one-time deal hunter or will become a loyal repeat
customer.
We develop a set of useful features to capture
the underlying structure of the data, including
features regarding users, merchants, categories,
brands, items and their interaction. We also pro-
pose to learn collaborative features with embed-
dings, which represent users and merchants in a
shared feature space.
We use logistic regression, gradient boosting deci-
sion trees, and factorization machines as individual
classification models. We develop a diversified en-
semble model to combine different feature sets and
models.
Our solution obtained AUCs of 70.4762% in stage
1 and 71.0163% in stage 2, ranked 2nd and 3rd
places respectively in IJCAI 2015 Repeat Buyer
Prediction Competition.

1 Introduction
Online sales promotions usually attract a large number of
buyers on E-commerce sites. However, only a small portion
of the users will return and become loyal repeat buyers. In
IJCAI 2015 Repeat Buyer Prediction Competition, we study
the problem of predicting repeat buyers on E-commerce data.

In this task, we are given user profiles and action logs on
Tmall.com. Tmall runs large-scale sales promotions on
November 11th each year, which is usually called the “Dou-
ble 11” day. The dataset of the challenge consists of two
tables. In the first table, we have user profiles, including
age ranges, gender and user IDs. The second table contains
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user action logs, in which each log represents a click/add-to-
cart/add-to-favorite/purchase action between a user u and a
merchant m on an item i at time t. Each item i is associated
with a brand bi and a category ci. These action logs are col-
lected in a span of six months prior to the “Double 11” day.
Our task is to predict whether a new buyer of a merchant on
the “Double 11” day will return and purchase in the following
six months.

The competition has two stages. In stage 1, the data set
contains 260, 865 training instances, 261, 478 test instances
and action logs of 7 million distinct user-merchant pairs. We
ran our algorithms offline and submitted the prediction re-
sults for evaluation. In stage 2, we submitted our code to
a distributed computing platform provided by the organizer,
where the platform distributes the records of different users to
different nodes. The data set in stage 2 contains 3, 441, 313
training instances, 3, 443, 594 test instances, and action logs
of 192 million distinct user-merchant pairs. The IDs of mer-
chants, items, categories and brands are shared in training and
test sets, while user IDs of the two sets do not overlap.

One key challenge of the problem is how to leverage the
collaborative information between users and merchants. Con-
ventional methods like collaborative filtering [Sarwar et al.,
2001; Breese et al., 1998], matrix factorization [Koren et
al., 2009], and factorization machines [Rendle, 2010] address
the issue by modeling similar users, modeling similar mer-
chants, or factorizing the low-rank interaction between users
and merchants. However, these methods represent users and
merchants in separate spaces, and thus simply applying dot
products across spaces will not be expressive enough. Also,
with such methods, similar users do not directly interact with
each other to learn better features. In this work, we propose
to model users and merchants as continuous embeddings in
a shared latent space based on random walks. By modeling
users and merchants in a shared space, applying dot prod-
ucts can have clear explanations of similarities. Also, through
random walks, similar users and similar merchants are at the
same time incorporated into the optimization framework.

Another challenge is how to leverage the rich action logs
to improve the prediction. Extra information including cate-
gories, brands and items is very important in this task. We de-
velop a set of collaborative features by examining repeat pur-
chase statistics and the frequent categories, brands and items
for a given pair of user and merchant.



Based on logistic regression [Cox, 1958], gradient boost-
ing trees [Friedman, 2001], and factorization machines [Ren-
dle, 2010], we develop a diversified ensemble model for pre-
diction. We combine different feature sets and different mod-
els, and use ridge regression [Hoerl and Kennard, 1970] to
blend the prediction on the test data.

In stage 1, we took the 2nd place by achieving an AUC
of 70.4762%. In stage 2, because we have to deploy our al-
gorithms on the distributed computing platform, we did not
implement all of our algorithms in stage 1. As a result, we
took the 3rd place by achieving an AUC of 71.0163%. The
score in stage 2 is better than that in stage 1 because of larger
data amount.

2 Framework
In this section, we illustrate the proposed prediction frame-
work.

Our solution can be divided into three components: feature
engineering, individual models, and model ensemble. Figure
1 illustrates the architecture of our solution.

We design a bunch of feature engineering techniques to ex-
tract useful features from the data. Besides basic general fea-
tures for recommender systems, we design two novel feature
sets to better capture the underlying structure of the data. We
develop embedding techniques to represent users and mer-
chants in a shared latent space, and use the cosine similarities
as features. We also focus on repeat action statistics to utilize
the statistical power of category/brand/item information.

We propose a diversified ensemble model for prediction.
Let F be a set of feature sets, where each element is a set of
features. Let M be a set of models, which are logistic re-
gression, gradient boosting decision trees, and factorization
machines in our solution. We apply a Cartesian product on
the two sets F ⊗M to obtain combinations of models and
features. We use ridge regression to ensemble different com-
binations to obtain the final prediction.
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Figure 1: Architecture of our solution.

3 Feature Engineering
In this section, we introduce the three sets of features we de-
rive - basic features, repeat features, and embedding features.
Basic features are general features for recommender systems.
Repeat features are designed for this specific problem, focus-
ing on repeat statistics regarding users and the interactions

with categories, brands and items. Embedding features are
extracted with advanced learning techniques, which jointly
represent users and merchants in a shared latent space.

3.1 Basic Features
Generally, the basic features can be categorized into three
groups: the user-related features that describe users’ charac-
teristics; the merchant-related features that are only related
to merchants’ information; and the user-merchant features
that capture the interactions and the characteristics of user-
merchant pairs.

User-Related Features
The dataset provides information on users’ age and gen-
der, and we take those fields as categorical features directly.
We count the total number of click, purchase, and add-to-
favourite actions of a user to measure user activity. We
omit add-to-cart actions in all our features because we found
that the information provided by add-to-cart actions is almost
identical to that of purchase actions, and in both stages of the
contest the performances of our method improved after re-
moving the features related to add-to-cart actions. We also
use the number of distinct items/merchants/categories that a
user clicked/purchased/favored for characterizing a user’s ac-
tivity. We utilize the time information by using the number of
active days, the number of recent active days, and the oldest
active day for a user as numerical features.

Merchant-Related Features
Merchant ID is a very strong indicator for a merchant’s likeli-
hood of having repeat buyers. However, we also derive some
other merchant-related features, because the training data of
some merchants is sparse, and the feature weights of these
merchants’ IDs can not be estimated accurately. Besides mer-
chant IDs, we count the number of actions and distinct users
that clicked/purchased/favored a merchant as numerical fea-
tures. We use the ratio of purchased items in summer to
model a merchant’s seasonality.

Notice that we only use this category of features in stage
1 of the contest, since the distributed environment of stage 2
does not guarantee that all data records of one merchant are
sent to the same node.

User-Merchant Features
The user-merchant features are similar to the user-related fea-
tures. We compute the number of click/purchase/favorite ac-
tions and the number of total/recent/oldest active days of a
user-merchant pair as numerical features. In addition, we use
the category IDs and the brand IDs of the items that a user
purchased from a merchant as categorical features to model
the context of a user-merchant pair.

Post Processing For Feature Vectors
In order to leverage the nonlinear effect of features, in stage 1
we discretize all the numerical features into bins of equal fre-
quencies before feeding the features into linear models like
logistic regression. However, we do not adopt this practice in
stage 2, since the split points can not be computed in the pro-
vided distributed environment. Thus, we convert the feature
value x of each numerical features to log(1 + x) in stage 2.



Experiments show that both processing techniques perform
similarly and are much better than the original one.

3.2 Repeat Features
In this section, we introduce a set of repeat features. Because
the problem is to predict repeat buyers, we focus on the repeat
buying statistics to extract features. We leverage extra infor-
mation like categories and brands to develop the new feature
set.

User Repeat Features
In the given datasets, unlike merchants, the sets of users do
not overlap between training and test. Therefore, we cannot
use user IDs as features, though they may be informative. In-
stead, it is important to examine the repeat buying statistics
of users.

For each user, we extract the following features to indicate
the user’s repeat buying pattern.
• Average span between any two actions.
• Average span between two purchases.
• How many days since the last purchase.
The features above characterize the activity and repeat buy-

ing pattern of each user, which are important statistics of user
behaviors.

User-Merchant/Category/Brand/Item Repeat Features
We also leverage merchant/category/brand/item information
to better capture the repeat buying patterns of users. We ex-
tract the following features.
• Average active days for one merchant, category, brand

or item.
• Maximum active days for one merchant, category, brand

or item.
• Average span between any two actions for one merchant,

category, brand or item.
• Ratio of merchants, categories, brands or items with re-

peated actions.

Category/Brand/Item Repeat Features
Besides repeat buying patterns of users, it is also important
to utilize the repeat buying patterns of categories, brands and
items. To this end, we extract the following features for each
category/brand/item.
• Average active days on the given category, brand or item

of all users.
• Ratio of repeated active users on the given category,

brand or item.
• Maximum active days on the given category, brand or

item of all users.
• Average days of purchasing the given category, brand or

item of all users.
• Ratio of users who purchase the given category, brand or

item more than once.
• Maximum days of purchasing the given category, brand

or item of all users.

• Average span between two actions of purchasing the
given category, brand or item of all users.

Given a pair of user u and merchant m, we compute the
top-k frequent categories, brands and items in the interaction
log between u and m, and then use the according features
above as the features of < u,m >.

3.3 Collaborative Embedding Features
To leverage the collaborative information between users and
merchants, we develop a set of collaborative features to char-
acterize how well a user’ interest aligns with a merchant. We
model users and merchants in a shared latent space to uncover
the underlying structure of the user-merchant interaction data.
We compute the similarities between users and merchants as
features based on the learned embeddings.

Algorithm 1: Learning collaborative features with user-
merchant embeddings

Input: Action logs L, user set U , merchant set M , walks
per vertex γ

Output: Embeddings f
// construct the user-merchant

interaction graph
1 initialize vertex set V ← U ∪M
2 initialize edge set E ← ∅
3 foreach < u,m >∈ L do
4 E ← E+ < u,m >

5 construct a graph G = (V,E)
// generate random walks

6 initialize random walksW ← ∅
7 for i← 1 to γ do
8 V ′ ← random shuffle(V )
9 foreach v ∈ V ′ do

10 W ← random walk(v,G)
11 W ←W +W

// learn embeddings
12 initialize f ′ and f
13 SGD(W, f , f ′)
14 return f

Algorithm 1 illustrates the procedure of learning user-
merchant embeddings. Let U and M be the set of users and
merchants. The input of the algorithm is a set of action logs,
where each element is a user-merchant pair < u,m >, where
u ∈ U and m ∈ M , indicating that u interacted with m. We
consider all types of actions equally. If u has multiple actions
with m, the pair < u,m > will appear in L multiple times.

f is a (|U |+ |W |)× d matrix, where d is the dimension of
the embeddings. Each row of f represents the embedding of
a user or merchant. f ′ is an auxiliary matrix.

Following [Perozzi et al., 2014] and [Mikolov et al., 2013],
we generate sequences of random walks on the user-merchant
interaction graph and learn the user-merchant embeddings
based on the Skipgram model.

We construct a user-merchant interaction graph. The vertex
set of the graph is U ∪M . For each action log < u,m > in
L, we add an edge between vertex u and vertex m.



After constructing the user-merchant interaction graph, we
generate a series of random walks starting from each user and
merchant.

Given random walksW , the loss function of the Skipgram
model is defined as

L = −
∑

W∈W

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

(f ′Wt+j

ᵀfWt
−
∑
w∈V

f ′w
ᵀfWt

)

where f ′ and f are input and output embeddings. T is the
length of random walk W and c is the window size of con-
text. We perform stochastic gradient descent (SGD) [Bot-
tou, 2010] to update f and f ′. We use the implementation of
Gensim [Řehu̇řek and Sojka, 2011] for learning the Skipgram
model.

Diversified Features at Different Iterations
Given a pair of user u and merchant m, we compute the co-
sine similarity between fu and fm and apply it as a feature.

We develop a method to extend the dimensionality and
diversity of the embedding features. As is shown in Algo-
rithm 1, we use SGD to iteratively update the embeddings f .
To further diversify our features, we read out the embeddings
f every k iterations. For example, if we set k = 10 and run
SGD for 100 iterations, then we read the embeddings f at it-
eration 10, 20, · · · , 100 and obtain a 10-dimensional feature
vector. This idea is similar to ensembling classifiers with dif-
ferent regularization parameters, which is effective at diver-
sifying the results and improving the prediction, as demon-
strated in our experiments.

4 Models
In this section, we describe our ensemble method based on lo-
gistic regression, ridge regression, gradient boosting decision
trees and factorization machines.

4.1 Individual Models
Formally, our task is a binary classification problem. Thus,
we leverage three popular classification models, including
logistic regression (LR), gradient boosting decision trees
(GBDT), and factorization machines (FM) in our solution.

Logistic regression is a widely-use linear classifier. It is in-
trinsically simple and so is less prone to over-fitting. In fact,
our experimental result shows that LR achieves the best per-
formance among all the individual models. We use L2 regu-
larizer in stage 1 and L1 in stage 2. We use the implementa-
tion of LibLinear [Fan et al., 2008].

Gradient Boosting Decision Tree is a tree-based additive
model. GBDT learns multiple decision trees iteratively,
where the learning target of the current tree is defined as
the loss gradient of the previous trees. GBDT outputs the
additive predicitions of all trees as the final prediction. It
has a strong predictive power and naturally handles data with
heterogeneous features. We use the implementation of XG-
Boost [Chen and He, 2015].

Factorization Machines combine the advantages of support
vector machines (SVM) and matrix factorization models. In

contrast to linear models like LR and SVMs, FMs model
all interactions between variables using factorization method.
Thus, FMs are able to overcome the sparsity problem in many
tasks. We use the implementation of LibFM [Rendle, 2012].

4.2 Diversified Ensemble
We describe the ensemble techniques we develop in stage 1.

We initially extract a baseline feature set F0. Iteratively,
we design new features and merge them with original fea-
tures to obtain a new feature set. In this way, we obtain a
sequence of feature sets F0,F1,F2, · · · ,Fn, where Fi ⊆
Fi+1,∀i < n. This method makes a trade-off between stabil-
ity and diversity. For one thing, by introducing new feature
sets, we introduce diversity into different models. For an-
other, by incorporating the previous feature sets into the new
feature sets, we maintain the stability of our models. This
diversified feature ensemble method can yield better results,
especially when the appended features cannot give reason-
ably good prediction alone but will improve the prediction
together with the original features.

Let F = ∪iFi, andM be the set of three individual mod-
els. We apply Cartesian product to obtrain F ⊗M. Then we
train all models in F ⊗M separately to generate |F ⊗M|
predictions, denoted as ŷ.

In order to diversify the ensemble result, we perform non-
linear extension to obtain new predictions

√
ŷ, ŷ2, exp(2ŷ).

We then train a ridge regression model on the extended pre-
dictions, and output the final predictions. We tune the hy-
perparameter of the ridge regression model to have relatively
strong regularization.

5 Experiments

Stage 1 Performance. Table 1 shows the best performances
on stage 1 test set for each type of individual models we
use and that of the diversified ensemble method. The table
also presents the performance of a simple ensemble method
that ensembles the three best individual models for compar-
ison. It can be seen that logistic regression obtains the best
performance among the three individual models, which sug-
gests that the derived features may not have strong interac-
tion patterns that can be captured by factorization machines
and GBDT. For ensembling, the diversified ensemble method
achieves an improvement of +0.7% in terms of AUC com-
pared to the best single model, and it performs significantly
better than the simple ensemble method, which demonstrates
the effectiveness of the diversified ensemble method.

Table 1: Performances for each type of individual models and
ensemble methods on stage 1 test set.

Model AUC (%)
Logistic regression 69.782

Factorization machines 69.509
GBDT 69.196

Simple ensemble 70.329
Diversified ensemble 70.476



Factor Contribution Analysis. We provide an analysis on
the contribution of the two sets of features: embedding fea-
tures and repeat features. Table 2 shows the performance
gains after adding each set of features. As shown in the table,
we can observe a clear performance increase when adding
each set of features. This indicates that both embedding fea-
tures and repeat features contribute to performance improve-
ment, and our method works well by combining different sets
of features.

Table 2: Performance gains for each set of features on stage
1 test set (with logistic regression).

No. Method AUC (% ) Gain
1 Basic features 69.369 -
2 1 + Embedding features 69.495 0.126
3 2 + Repeat features 69.782 0.287

Stage 2 Performance. Table 3 gives a brief introduction of
several important performance gains of our method on stage
2 test set. It can be seen that repeat features still play an
important role in the large data set, which brings an improve-
ment of +0.243% compared to basic features and performs
consistently in both stages. We do not use embedding fea-
tures in this stage since we cannot extract those features in
the given distributed environment. Moreover, data cleaning
achieves a significant improvement +0.309% in stage 2, be-
cause the data set of stage 2 contains duplicated/inconsistent
records that the data set of stage 1 does not have.

Table 3: Performance gains on stage 2 test set.
No. Method AUC (% ) Gain
1 Basic features 70.346 -
2 1 + Repeat features 70.589 0.243
3 2 + Data cleaning & more features 70.898 0.309
4 3 + Fine-tuning parameters 71.016 0.118

6 Conclusion
In this paper, we introduce our solution at IJCAI 2015 Repeat
Buyer Prediction Competition.

We develop sets of novel features to better solve the prob-
lem of repeat buyer prediction on E-commerce data. We
propose to jointly learn user and merchant embeddings in a
shared latent space, and use the cosine similarities as features.
We design a set of repeat features to further mine the users’
behavior patterns and leverage category and brand informa-
tion.

We propose a diversified ensemble model based on three
individual models. We apply Cartesian product to obtain
combinations of different models and features, and train a
ridge regression model to generate the final predictions.

Our solution took the 2nd place in stage 1 and 3rd place in
stage 2. Experiments show that embedding features, repeat
features and diversified ensemble contribute significantly to
the result.
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[Bottou, 2010] Léon Bottou. Large-scale machine learn-

ing with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer, 2010.

[Breese et al., 1998] John S Breese, David Heckerman, and
Carl Kadie. Empirical analysis of predictive algorithms for
collaborative filtering. In Proceedings of the Fourteenth
conference on Uncertainty in artificial intelligence, pages
43–52. Morgan Kaufmann Publishers Inc., 1998.

[Chen and He, 2015] Tianqi Chen and Tong He. xgboost:
extreme gradient boosting. 2015.

[Cox, 1958] David R Cox. The regression analysis of binary
sequences. Journal of the Royal Statistical Society. Series
B (Methodological), pages 215–242, 1958.

[Fan et al., 2008] Rong-En Fan, Kai-Wei Chang, Cho-Jui
Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A
library for large linear classification. The Journal of Ma-
chine Learning Research, 9:1871–1874, 2008.

[Friedman, 2001] Jerome H Friedman. Greedy function ap-
proximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[Hoerl and Kennard, 1970] Arthur E Hoerl and Robert W
Kennard. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67,
1970.

[Koren et al., 2009] Yehuda Koren, Robert Bell, and Chris
Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, (8):30–37, 2009.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositional-
ity. In Advances in neural information processing systems,
pages 3111–3119, 2013.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining, pages 701–710. ACM, 2014.
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