Learning Large-Scale Social Knowledge Graphs

Zhilin Yang, Jie Tang
Dept. Computer Science, Tsinghua University
Large-scale social networks

• Facebook
 – 1.4 billion active users in Quarter 1, 2015
 – Tens of millions of posts per day

• AMiner
 – 39 million researchers
 – 79 million papers

• Large-Scale social networks are big information networks!
Large-scale collective knowledge

• Freebase
 – 44 million entities
 – 2.4 billion facts

• YAGO2
 – 10 million entities
 – 120 million facts

• Wikipedia
 – 35 million entities
 – 2 million categories
Bridge the gap

Social Network

Collective Knowledge

Andrew Ng

Chris Manning

Dan Klein

Michael Jordan

Computer science

Artificial intelligence

Machine learning

Natural language processing

System
Bridge the gap

- Social knowledge graph
- Why?
 - Better mine large volume of information
 - Better user understanding and recommendation
 - Better search
What we’ve done

• Propose an algorithm GenVector to learn large-scale social knowledge graph
 – Weakly supervision based on unsupervised techniques
 – Multi-source Bayesian embedding model

• Online deployment
 – Online service on AMiner.org
 – Online AB-test
Key features

• Large-scale
 – 38,049,189 researchers (AMiner)
 – 74,050,920 papers (AMiner)
 – 20,552,544,886 bytes corpus (Wikipedia full text)
 – 35,415,011 entities (Wikipedia)
Key features

• Large-scale
• Fast
 – Implementation optimization for a 60 times speedup
 – From 3 hours per iteration to 3 minutes
Key features

• Large-scale
• Fast
• Accurate
 – Offline test: 4% to 15%+ better than state-of-the-arts
 – Online test: decrease the error rate by 67%
Key features

• Large-scale
• Fast
• Accurate
• Novel
 – Bridge the gap between social networks and collective knowledge
 – Bridge the gap between topic models and word/network embedding
Key features

• Large-scale
• Fast
• Accurate
• Novel
• Real-world impact
 – Online deployment on AMiner
 – 183,876 visits ever since
Key features

• Large-scale
• Fast
• Accurate
• Novel
• Real-world impact

How did we make it?
Problem formulation

• Input
 – A social network
 – A collective knowledge source
 – Social text interaction

• Output
 – For each social network vertex, output related knowledge concepts as a ranked list
Approach

Social network
- Network embedding (Unsupervised)

Collective knowledge
- Knowledge concept embedding (Unsupervised)

Social text interaction
- Multi-Source Bayesian embedding model (Weakly-supervised)

Probability
Approach

Social network

Collective knowledge

Social text interaction

Unsupervised

Unsupervised

Unsupervised

Weakly-supervised

Leverage network structure

Multi-Source Bayesian embedding model

Probability
Approach

Social network
 Network embedding
 Unsupervised

Collective knowledge
 Knowledge concept embedding
 Unsupervised

Social text interaction
 Weakly-supervised

Leverage collective knowledge

Multi-Source Bayesian embedding model

Probability
Approach

Social network

Collective knowledge

Social text interaction

Network embedding

Knowledge concept embedding

Unsupervised

Unsupervised

Weakly-supervised

Multi-Source Bayesian embedding model

Probability

Weakly supervision based on unsupervised techniques
Approach

Social network
- Unsupervised
 - Network embedding

Collective knowledge
- Unsupervised
 - Knowledge concept embedding

Social text interaction
- Weakly-supervised

Multi-Source Bayesian embedding model
- Probability

Bridge the gap!
Multi-source Bayesian embeddings

Number of documents: D, number of topics: T, dimension of embedding: E
Multi-source Bayesian embeddings

Number of documents: D, number of topics: T, dimension of embedding: E
Multi-source Bayesian embeddings

Generate a topic distribution for each document

Number of documents: D, number of topics: T, dimension of embedding: E
Multi-source Bayesian embeddings

Number of documents: D, number of topics: T, dimension of embedding: E

Generate Gaussian distribution for each topic
Multi-source Bayesian embeddings

Generate the topic for each word

Number of documents: D, number of topics: T, dimension of embedding: E
Multi-source Bayesian embeddings

Generate the topic for each user

Number of documents: D, number of topics: T, dimension of embedding: E
Multi-source Bayesian embeddings

Generate embeddings for keywords and users

Number of documents: D, number of topics: T, dimension of embedding: E
Inference

• Collapsed Gibbs sampling

• The joint probability

\[p(\theta, \mu^r, \lambda^r, \mu^k, \lambda^k, z, y, f^r, f^k; \alpha, \tau^r, \tau^k) = p(\theta; \alpha)p(\mu^r, \lambda^r; \tau^r)p(\mu^k, \lambda^k; \tau^k) \]

\[p(z|\theta)p(f^k|z, \mu^k, \lambda^k)p(f^r|y, \mu^r, \lambda^r)p(y|z) \]
Inference

Dirichlet distribution

\[p(\theta_d; \alpha) = \frac{1}{\Delta(\alpha)} \prod_{t=1}^{T} \theta_{dt}^{\alpha_t - 1} \]

Normal Gamma distribution

\[p(\mu_{1e}^r, \lambda_{1e}^r; \tau_e^r = \{\mu_0, \lambda_0, \alpha_0, \beta_0\}) = \frac{\beta_0^\alpha \sqrt{\lambda_0}}{\Gamma(\alpha_0) \sqrt{2\pi}} \lambda_{1e}^r \alpha_0 - 1/2 e^{\beta_0 \lambda_{1e}^r} e^{-\frac{\lambda_0 \cdot \mu_{1e}^r - (\mu_{1e}^r - \mu_0)^2}{2}} \]

\[p(\mu_{1e}^k, \lambda_{1e}^k; \tau_e^k = \{\mu_0, \lambda_0, \alpha_0, \beta_0\}) = \frac{\beta_0^\alpha \sqrt{\lambda_0}}{\Gamma(\alpha_0) \sqrt{2\pi}} \lambda_{1e}^k \alpha_0 - 1/2 e^{\beta_0 \lambda_{1e}^k} e^{-\frac{\lambda_0 \cdot \mu_{1e}^k - (\mu_{1e}^k - \mu_0)^2}{2}} \]
Inference

Generating topics

\[p(z_{dm}|\theta_d) = \theta_d z_{dm} \]

\[p(y_d|z_d) = \frac{\sum_{m=1}^{M_d} \mathbb{I}(z_{dm} = y_d) + l}{M_d + Tl} \]
Inference

Generating embeddings

\[
p(f_{dm}^k | z_{dm}, \mu^k, \lambda^k) = \frac{1}{\sqrt{2\pi}} \sqrt{\lambda^k} e^{-\frac{\lambda^k}{2} (f_{dm}^k - \mu^k)^2}
\]

\[
p(f_{dm}^r | z_{dm}, \mu^r, \lambda^r) = \frac{1}{\sqrt{2\pi}} \sqrt{\lambda^r} e^{-\frac{\lambda^r}{2} (f_{dm}^r - \mu^r)^2}
\]
Inference

Full Conditional

\[p(y_d = t | y_{-d}, z, f^r, f^k) \propto (n_d^l + l) \prod_{e=1}^{E^r} G'(f^r, y, t, e, \tau^r, d) \]

\[p(z_{dm} = t | z_{-dm}, y, f^r, f^k) \propto (n_d^{y_d} + l)(n_d^l + \alpha_t) \prod_{e=1}^{E^k} G'(f^k, z, t, e, \tau^k, dm) \]

\[G'(f, y, t, e, \tau, d) = \frac{\Gamma(\alpha_n) \beta_n^{\alpha_n'} (\kappa_n')^{1/2} (2\pi)^{-n/2}}{\Gamma(\alpha_n') \beta_n^{\alpha_n} (\kappa_n)^{1/2} (2\pi)^{-n'/2}} \]
Parameter update

\[\theta_d^t = \frac{n_d^t + \alpha_t}{\sum_{t=1}^T (n_d^t + \alpha_t)} \]

\[\mu_t^k = \frac{\kappa_0 \mu_0 + n\bar{x}}{\kappa_0 + n} \]

\[\lambda_t^k = \alpha_n \beta_n^{-1} = \frac{\alpha_0 + n/2}{\beta_0 + \frac{1}{2} \sum_i (x_i - \bar{x})^2 + \frac{\kappa_0 n(\bar{x} - \mu_0)^2}{2(\kappa_0 + n)}} \]
Embedding update

\[
\frac{\partial L}{\partial f^{r}_{de}} = \sum_{t=1}^{T} -\lambda^{r}_{te}(f^{r}_{de} - \mu^{r}_{te})
\]

\[
\frac{\partial L}{\partial f^{k}_{we}} = \sum_{t=1}^{T} n^{t}_{w}(-\lambda^{k}_{te})(f^{k}_{we} - \mu^{k}_{te})
\]
Learning framework

- Initialize
- Burn-in
 - Sample topics
- Sampling
 - Sample topics
 - Update parameters
 - Update embeddings
Experiments

• Comparison methods
 – GenVector: our method
 – GenVector-E: without embeddings
 – GenVector-M: without the model
 – GenVector-R: use weakly-supervision score only
 – AM-base: AMiner previous method
 – CountKG: sort by counts after KG matching
 – Author-topic: Author-topic model
 – NTN: Neural tensor network
Experiments: homepage matching

<table>
<thead>
<tr>
<th>Methods</th>
<th>Precision@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenVector</td>
<td>77.9402%</td>
</tr>
<tr>
<td>GenVector-E</td>
<td>77.8548%</td>
</tr>
<tr>
<td>GenVector-M</td>
<td>65.5608%</td>
</tr>
<tr>
<td>GenVector-R</td>
<td>72.8549%</td>
</tr>
<tr>
<td>AM-base</td>
<td>73.8189%</td>
</tr>
<tr>
<td>CountKB</td>
<td>54.4832%</td>
</tr>
<tr>
<td>Author-topic</td>
<td>74.4397%</td>
</tr>
<tr>
<td>NTN</td>
<td>65.8911%</td>
</tr>
</tbody>
</table>
Experiments: LinkedIn skill machining

<table>
<thead>
<tr>
<th>Methods</th>
<th>Precision@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenVector</td>
<td>26.8468%</td>
</tr>
<tr>
<td>GenVector-E</td>
<td>26.5765%</td>
</tr>
<tr>
<td>GenVector-M</td>
<td>24.6695%</td>
</tr>
<tr>
<td>GenVector-R</td>
<td>26.3063%</td>
</tr>
<tr>
<td>AM-base</td>
<td>24.5195%</td>
</tr>
<tr>
<td>CountKB</td>
<td>25.4954%</td>
</tr>
<tr>
<td>Author-topic</td>
<td>26.4864%</td>
</tr>
<tr>
<td>NTN</td>
<td>24.3243%</td>
</tr>
</tbody>
</table>
Experiments: human labeling bad cases

<table>
<thead>
<tr>
<th>Methods</th>
<th>Precision@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenVector</td>
<td>98.8%</td>
</tr>
<tr>
<td>GenVector-R</td>
<td>99.6%</td>
</tr>
<tr>
<td>AM-base</td>
<td>81.2%</td>
</tr>
<tr>
<td>Author-topic</td>
<td>98.4%</td>
</tr>
<tr>
<td>NTN</td>
<td>92.8%</td>
</tr>
</tbody>
</table>
Online deployment

Jiawei Han (韩家炜)

Department of Computer Science, University of Illinois at Urbana-Champaign

Professor

(217) 333-6903
hanj@cs.uiuc.edu
http://www.cs.uiuc.edu/~hanj/

Research Interests

- Data Mining
- Information Extraction
- Machine Learning
- Data Analysis
- Text Mining
Online deployment

Publication Database (MongoDB)

Online Cache (Redis)

Server

Stream Graph (D3JS)

Social Knowledge Graph
Implementation optimization

- Faster computation of $G'(\cdot)$
- Faster computation of log, exp and pow
- Local variables instead of in-array access
- Multi-thread parallelization
Run time and convergence
Online AB-test

Leverage collective intelligence
-- evaluate the methods
-- leverage user feedback to improve the model
Online AB-test

<table>
<thead>
<tr>
<th>Methods</th>
<th>Precision@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenVector</td>
<td>96.67%</td>
</tr>
<tr>
<td>AM-base</td>
<td>90.00%</td>
</tr>
</tbody>
</table>
Case study: Andrew Ng

<table>
<thead>
<tr>
<th>GenVector</th>
<th>AM-base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsupervised learning</td>
<td>Challenging problem</td>
</tr>
<tr>
<td>Feature learning</td>
<td>Reinforcement learning</td>
</tr>
<tr>
<td>Bayesian networks</td>
<td>Autonomous helicopter</td>
</tr>
<tr>
<td>Reinforcement learning</td>
<td>Autonomous helicopter flight</td>
</tr>
<tr>
<td>Dimensionality reduction</td>
<td>Near-optimal planning</td>
</tr>
</tbody>
</table>
Case study: Dan Klein

<table>
<thead>
<tr>
<th>GenVector</th>
<th>AM-base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language models</td>
<td>Machine translation</td>
</tr>
<tr>
<td>Markov models</td>
<td>Word alignment</td>
</tr>
<tr>
<td>Probabilistic models</td>
<td>Bleu score</td>
</tr>
<tr>
<td>Natural language</td>
<td>Best result</td>
</tr>
<tr>
<td>Coreference resolution</td>
<td>Language model</td>
</tr>
</tbody>
</table>
Case study: Xiaoou Tang

<table>
<thead>
<tr>
<th>GenVector</th>
<th>AM-base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature extraction</td>
<td>Face recognition</td>
</tr>
<tr>
<td>Image segmentation</td>
<td>Face image</td>
</tr>
<tr>
<td>Image matching</td>
<td>Novel approach</td>
</tr>
<tr>
<td>Image classification</td>
<td>Line drawing</td>
</tr>
<tr>
<td>Face recognition</td>
<td>Discriminant analysis</td>
</tr>
</tbody>
</table>
Take-away

• Large-scale
 – Link 38,049,189 researchers to 35,415,011 knowledge concepts

• Fast
 – 60 times speed up

• Accurate
 – Decrease the error rate by 67% online

• Novel
 – Bridge social networks and collective knowledge
 – bridge topic models and network/word embedding

• Real-world impact
 – Online service with 183,876 visits
Appendix
Learning keyword embeddings

- Skip-gram

\[W(t-2) \quad W(t-1) \quad W(t+1) \quad W(t+2) \]
Learning keyword embeddings

- Skip-gram
 - Use the current keyword to predict the context
 - Objective function

\[
\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \log p(w_{t+j} | w_t)
\]

\[
p(w_O | w_I) = \frac{\exp \left(v'_{w_O} \top v_{w_I} \right)}{\sum_{w=1}^{W} \exp \left(v'_{w} \top v_{w_I} \right)}
\]
Learning keyword embeddings

• Scan through all titles and abstracts
 – Extract n-grams according to Wikipedia concepts
• Replace all extracted n-grams in the Wikipedia corpus as a token
 – E.g., machine learning -> machine_learning
• Train a skip-gram model on the processed corpus
Learning network embeddings

• DeepWalk
 – Generate a random walk sequence from each node
 – Train a skip-gram model on the random walk sequence
Weakly supervision

• Given a researcher, extract all the keywords in his papers’ titles, denoted as k1, k2, ..., kn.
• Let ci be the count of the keyword ki in the author’s papers’ titles.
• Compute a score for each keyword ki

\[S_i = \sum C_j \cos(i,j) \]

• Select top-k keywords as weakly-supervised information